

Pierwsze kroki w IT​
PODCAST

Jak zacząć przygodę z

GameDev-em?
Gość: Mateusz Zawistowski

Wszystkie polecane materiały i linki znajdziesz na stronie odcinka:

https://devmentor.pl/b/jak-zaczac-przygode-z-gamedev-em

Dziś moim gościem jest Mateusz Zawistowski. Mateusz opowie
nam o branży GameDev, w której jest nie tylko programistą, ale
również producentem. Mateuszu, dziękuję, że przyjąłeś moje
zaproszenie na rozmowę.

Cześć, dzięki za zaproszenie. Mam na imię Mateusz i od dziesięciu lat

pracuję w branży GameDev. Na co dzień pełnię rolę Senior Unity

https://open.spotify.com/show/5G4Ykc9IwoCj4uirzGmxUh
https://podcasts.google.com/feed/aHR0cHM6Ly9mZWVkcy5idXp6c3Byb3V0LmNvbS8xODIxOTQ2LnJzcw==
https://podcasts.apple.com/us/podcast/pierwsze-kroki-w-it/id1581997479
https://www.facebook.com/devmentorpl
https://www.linkedin.com/in/mateusz-bogolubow/
https://devmentor.pl/podcast
https://www.youtube.com/@devmentor
https://devmentor.pl/

Developera, czyli programisty w technologii Unity. Poza

programowaniem zajmuję się też produkcją gier — łączę elementy

zarządzania z projektowaniem, bo to są jednak dwie różne dziedziny.

Dodatkowo zajmuję się mentoringiem w IT — pomagam początkującym i

średnio zaawansowanym programistom rozwijać się i zdobywać nowe

kompetencje. W ramach usługi Devmentor prowadzę kurs z Game

Developmentu w technologii Unity.

O tym też jeszcze porozmawiamy. Nie zdążyłem nawet poprosić cię
o przedstawienie się i opowiedzenie, co łączy cię z branżą IT, a już
to zrobiłeś, więc super. Przejdźmy do kolejnego pytania.
Wspomniałeś o technologiach. Jakie narzędzia warto znać, żeby w
ogóle móc tworzyć gry komputerowe? I jakie ścieżki kariery w
GameDevie można wyróżnić?

Powiedziałbym, że jest ich sporo, nie tylko kilka. Ogólnie pierwsze

pytanie, jakie należy sobie w ogóle zadać to takie, czy chcemy

konkretnie programować gry, ponieważ w GameDevie jest kilka takich

głównych kategorii ról i programista jest tylko jednym z nich. Są jeszcze

graficy, projektanci, testerzy. Jeżeli zdecydujemy, że naszym

powołaniem jest pisanie kodu, programowanie, to wtedy musimy

zdecydować się na wybór technologii. Technologii jest kilka i każda z

nich ciągnie tak naprawdę za sobą to, do czego będziemy ich stosować.

Można wyróżnić cztery główne ścieżki: dwie dominujące — Unity i

Unreal Engine — oraz dwie bardziej niszowe, które ostatnio zauważyłem

na rynku — czyli Godot i JavaScript.

https://devmentor.pl/

Wejdę tutaj tylko słowo, bo chciałbym zadać pytanie z trochę innej
działki – często jest tak jak np. u mnie: mamy frameworki, z których
się korzysta, ale ludzie często piszą też w czystym JavaScripcie,
tzw. Vanilla. Czy w twojej działce też tak jest i można pisać gry w
czystym C#, czy C++, czy raczej dziś to już rzadkość?

Jeżeli ktoś jest naprawdę zapaleńcem, to może napisać grę w czystym

C++ czy w czystym C, ale to jest mnóstwo pracy i wymaga mnóstwo

wiedzy niskopoziomowej, np. renderowanie grafiki dwuwymiarowej lub

trójwymiarowej. Teoretycznie się da, ale w praktyce standardem, a wręcz

koniecznością jest używanie jakiegoś silnika (bo my w GameDevie

raczej nie używamy słowa framework, ponieważ jest to znacznie bardziej

rozbudowana rzecz niż taki typowy framework). Stąd właśnie podział na

silniki Unity, Unreal Engine czy Godot.

Czyli w praktyce nie znajdziemy stanowisk typu „C# developer” w
kontekście gier?

Nie, tutaj nazwy stanowisk dla programistów są kierowane technologiami

tych silników, czyli Unity Developer, Unreal Engine Developer, Godot

Developer i język programowania jest elementem pracy — jeżeli mamy

Unity Developera, to siłą rzeczy musi on programować w C#, ponieważ

C# jest językiem używanym do skryptowania w Unity. W środku Unreal

Engine jest C++. W przypadku Godota jest to C# albo Python, więc jest

to powiązane ze względu na specyfikę danej technologii. Natomiast

głównym znacznikiem, główną metodą rozróżniania technologii jest ta

technologia.

OK, to kontynuuj, wybacz, że ci, przerwałem.

https://devmentor.pl/

Na początku chciałbym krótko opowiedzieć o dwóch technologiach

niszowych: Godot oraz Java Script. W środku Godota jest stosunkowo

nowy i stosunkowo prosty silnik do gier, który stara się być konkurencją

przede wszystkim dla Unity i znajduje swoje zastosowanie głównie

wśród gier niezależnych, małych studiów, czy też nawet pojedynczych

deweloperów, ze względu na swoją przystępność. Zwłaszcza że wspiera

on programowanie w Pythonie, a dla niektórych Python może być

bardziej przystępny niż np. C#. Natomiast jest on na tyle niszowy, że

raczej będzie ciężko o znalezienie pracy w tej technologii, ale można się

go nauczyć i korzystać z niego do własnych potrzeb. W przypadku JS-a

jest tak, że są pewne kategorie gier, pewne gatunki gier, głównie gier

przeglądarkowych, które bardzo mocno korzystają z kompetencji typowo

front-endowych, czyli HTML, JS, JavaScript i do tego dorzucają

zazwyczaj jakiś framework, który powstał z myślą o grach. Najczęściej

pojawia się framework PixiJS. Natomiast są to niszowe specjalizacje.

Ofert pracy w nich jest raczej niewiele, więc podaję to raczej jako

ciekawostkę.

Natomiast takimi głównymi specjalizacjami są właśnie Unity i Unreal

Engine. Zacznę od Unity – to jest właśnie moja specjalizacja. Unity jest

współcześnie jednym z dwóch najpopularniejszych silników do tworzenia

gier na rynku. Do skryptowania wykorzystuje C# i jest dosyć

uniwersalnym silnikiem, jeśli chodzi o zastosowanie. Można w nim

tworzyć gry komputerowe, gry na konsole, gry na Google VR, gry

mobilne. I w praktyce najczęściej jest to silnik stosowany właśnie do gier

mobilnych oraz do tak zwanych gier niezależnych, czyli gier o niskim

bądź średnim budżecie. Jeśli chodzi o próg wejścia, określiłbym go jako

średni – żeby móc biegle posługiwać się Unity trzeba najpierw dobrze

https://devmentor.pl/

opanować C# i solidne podstawy programowania. To jest właśnie moja

specjalizacja i ta ścieżka znalazła się w kursie, który prowadzę w

Devmentorze.

To może dopytałbym o ścieżkę Unity, bo wspomniałeś o tym, że
dotyczy ona raczej gier z mniejszym budżetem. Czy wygląda to tak,
że zaczynamy od Unity, zdobywamy doświadczenie i dopiero potem
przechodzimy do Unreala? Czy można też od razu zacząć od
Unreala i tam rozwijać karierę?

Jak najbardziej, można zacząć od Unreala, zwłaszcza jeżeli jesteśmy

bardzo konkretnie nastawieni na pracę przy większych produkcjach.

Natomiast Unreal Engine charakteryzuje się tym, że ma wyższy próg

wejścia od Unity. Wynika to z kilku rzeczy. Pierwsza jest taka, że Unreal

Engine jest znacznie potężniejszym, a co za tym idzie bardziej

wymagającym sprzętowo silnikiem niż Unity. Jeżeli ktoś nie dysponuje

jakimś droższym sprzętem, np. laptopem gamingowym za 10 tysięcy lub

więcej, to mogą być problemy z jego uruchomieniem i płynną pracą.

Druga rzecz to język.

Głównym językiem do skryptowania w Unreal Engine jest C++, który jest

językiem bardziej niskopoziomowym niż C#, co oznacza, że jest mniej

przystępny, ma trochę bardziej skomplikowaną składnię i wiele

czynności, które w C# czy też w innych językach wysokopoziomowych

są automatyczne – tak jak zarządzanie pamięcią, alokowanie pamięci,

zwalnianie jej – w C++ trzeba robić ręcznie. To wymaga dodatkowej

wiedzy i doświadczenia, więc nauka jest trudniejsza, zwłaszcza dla

początkujących.

https://devmentor.pl/

Dlatego Unity może być lepszym pierwszym krokiem, jeżeli chcemy

przyswoić sobie jakąkolwiek technologię do robienia gier i jest bardziej

przystępna. Później możemy zdecydować, czy idziemy w specjalizację

Unity, bo tu też jest ogrom wiedzy, którą zgłębiają senior-developerzy

specjalizujący się w Unity, czy robimy ten skok w bok, zmieniamy naszą

ścieżkę i uczymy się Unreal Engine. Przejścia z Unity na Unreala

zdarzają się często, w drugą stronę rzadziej, ale też się zdarzają.

Najczęściej zależy to po prostu od oczekiwań rynku.

A jeśli chodzi o platformy — Unity pozwala tworzyć aplikacje na
wiele różnych, czy Unreal też to oferuje? Czy raczej tutaj skupiamy
się tylko na tych głównych platformach: PC, jakieś Xboxy,
PlayStation itd.?

Teoretycznie Unreal Engine jest równie portowany co Unity, ale praktyka

pokazuje, że Unreal Engine prawie wcale nie jest używany do gier

mobilnych oraz do gier projektowanych z myślą o platformach

mobilnych, takich jak na przykład Switch czy Steam Deck, bo jest po

prostu zbyt obciążający. Jest to potężna machina, która służy do

generowania i symulowania mega detalicznych, realistycznych światów i

jest to trochę taki overkill, jeżeli chcemy zrobić prostą gierkę mobilną, np.

Candy Crusha. W przypadku VR w wirtualnej rzeczywistości również

dominuje Unity, z tego względu, że gogle VR dla komfortu

doświadczenia wymagają bardzo wysokiej częstotliwości odświeżania

obrazu – minimum 90 Hz, a najlepiej 120 albo 144, i to w dużej

rozdzielczości, więc próba uruchomienia gry zrobionej na Unreal Engine

z całą zaawansowaną grafiką w tak dużej rozdzielczości, w tak dużej

częstotliwości odświeżania obrazu – tym bardziej na tak zwanych

https://devmentor.pl/

goglach standalone, które nie są podłączone do komputera, tylko

działają samodzielnie (np.MetaQuest 3) – tutaj możemy natrafić na

niewydolność sprzętu.

Unity ma tu przewagę, bo jest lżejsze i dodatkowo oferuje dwa tryby

renderowania: HDRP (High Definition Rendering Pipeline) dla gier z

wysoką jakością grafiki oraz URP (Universal Rendering Pipeline) dla

lżejszych projektów. Wybierając URP, rezygnujemy z części efektów, np.

Ray Tracingu, ale w zamian za to otrzymujemy bardziej wydajny, mniej

wymagający rendering grafiki, dzięki czemu jesteśmy w stanie łatwiej i

szybciej zrobić grę dostosowaną, na przykład pod Gogle Wirtualnej

Rzeczywistości.

OK, dopytam jeszcze o Unreala, bo przed naszą nagrywką
wspomniałeś o tym, że Wiedźmin 4 jest pisany w Unrealu – a wersja
trzecia była chyba na własnym silniku, dlaczego w ogóle
zdecydowali się na Unreala?

Historia jest taka, że Wiedźmin 2 i 3 oraz Cyberpunk zostały stworzone

na autorskim Red Engine. Później kadra zarządzająca CD Projekt

postanowiła przenieść się na Unreal Engine 5. Powodów było kilka.

Przede wszystkim firma weszła we współpracę z Epic Games, twórcami

Unreal Engine i jest to transakcja wiązana. Z jednej strony otrzymują oni

większe wsparcie, może nawet jakieś finansowanie za to, że dokonali tej

decyzji, a z drugiej Unreal Engine 5 zyskuje prestiż, bo Wiedźmin 4 jest

nie tylko grą, ale też w pewnym sensie pokazem możliwości silnika.

Druga przyczyna jest taka, że gdy studio decyduje się na pracę w swoim

własnym silniku, to siłą rzeczy tworzy sobie taką barierę: mamy na rynku

https://devmentor.pl/

pewną ilość dostępnych do zatrudnienia Unreal Engine deweloperów,

ale nie ma Red Engine deweloperów, bo jest to zamknięty silnik. Nie jest

on dostępny dla przeciętnego zjadacza chleba, więc siłą rzeczy – jeżeli

robimy grę na własnym silniku i przychodzi do nas programista to

musimy go tego silnika nauczyć. Czasami może to trwać miesiąc, dwa, a

czasami może to zająć naprawdę dużo czasu, żeby taki programista był

w stanie pracować biegle. I właśnie dlatego coraz więcej studiów, które

wcześniej korzystały z własnych rozwiązań, rezygnuje z nich na rzecz

Unreal Engine 5, bo chce mieć możliwość szybkiego onboardingu ludzi,

którzy w tej technologii pracują już sporo lat.

OK, trochę ci przerwałem, więc powiedz, czy chcesz coś jeszcze
dodać o Unreal Engine? Jeśli nie, przejdziemy dalej.

Tylko dopowiem, że Unreal Engine, a zwłaszcza jego ostatnia odsłona,

czyli Unreal Engine 5, znajduje zastosowanie głównie w projektach AAA

(jest to takie określenie na gry z najwyższej półki, np. Wiedźmin 3, 4,

GTA, Red Dead Redemption, Assassin's Creed) pod względem budżetu,

bo z jakością bywa różnie, szczególnie w ostatnich latach. Unreal jest w

tym segmencie zdecydowanie najczęściej wykorzystywany. Gier AAA

tworzonych na Unity praktycznie nie ma.

W ostatnich latach powstał nowy segment – AA. To coś pomiędzy grami

niezależnymi, które charakteryzują się pewną prostotą, niskim

budżetem, a wielkimi produkcjami AAA. Segment ten powstał ze

względu na postęp technologiczny oraz wytworzenie się pewnych

nowych schematów i etosów pracy. Z jednej strony tworzy się w nim gry,

które są znacznie mniejsze, jeśli chodzi o scope: są krótsze, nie mają

otwartego świata, ale z drugiej strony jakość wykonania tych gier w

https://devmentor.pl/

ogóle nie odstaje od gier AAA. Najlepszym przykładem takiej gry jest

premiera z mniej więcej początku tego roku, czyli Clair Obscur

Expedition 33.

To debiutancka gra francuskiego studia założonego przez byłego

pracownika Ubisoft, który miał dość pracy w tej firmie. Założył własne

studio, znalazł funding, nie pamiętam nazwy, ale jest to wydawca

właśnie gier niezależnych. Zespół liczył maksymalnie 30 osób i przez 6

lat stworzył grę, która nie jest ogromna, jest świetnie wykonana, świetnie

zaprojektowana, zaprogramowana, pięknie wygląda i spokojnie może

kandydować o miano gry roku 2025. Dla porównania: w produkcjach

Ubisoftu czy Wiedźmina pracuje po kilkaset osób, co oznacza zupełnie

inną skalę organizacji i koordynacji pracy.

A czy jesteśmy w stanie powiedzieć, ilu jest programistów Unity, a
ilu Unreal? Bo produkcji AAA jest kilka czy kilkanaście, a
mniejszych tytułów znacznie więcej. To jak wygląda rynek – jest
więcej ofert dla Unity developerów czy jednak dla Unreal?

To się trochę zmieniło na przestrzeni ostatnich lat ze względu na

zwiększenie popularności Unreal Engine, gdy wypierał domowe silniki

poszczególnych studiów. Jeszcze kilka lat temu Unity miało około

60–70% ofert pracy w Polsce. Dziś, zbliża się to bardziej do 50/50. Ale

trzeba też zwrócić uwagę na jedną rzecz – to nie są dokładnie takie

same oferty pracy, ponieważ ze względu na specyfikę pracy studiów

AAA, oferty pracy Unreal Engine to często oferty stacjonarne. Większość

studiów AAA w ogóle nie oferuje pracy zdalnej, czasami jest to praca

hybrydowa. Natomiast ze względu na różne rzeczy: kulturę pracy,

organizację pracy, poufność, chociażby dostęp do plików, jest to często

https://devmentor.pl/

praca na miejscu, w konkretnej lokalizacji. Podczas gdy w przypadku

gier powstających na Unity, głównie mobilnych, te firmy są znacznie

bardziej otwarte na pracę zdalną.

Czyli teoretycznie rynek jest większy, bo można pracować zdalnie,
także dla firm z innych krajów, jeśli nie planujemy przeprowadzki?

Tak, dokładnie. Gdybym np. był developerem Unreal i chciał pracować w

Rockstar Games, musiałbym przeprowadzić się do USA. W przypadku

Ubisoftu – do Francji albo Kanady. Jeśli chciałbym tworzyć Wiedźmina 4,

muszę mieszkać w Warszawie lub okolicach. Natomiast jako Unity

Developer przy grach mobilnych czy niezależnych mogę spokojnie

pracować zdalnie, z dowolnego miejsca.

No dobrze, porozmawialiśmy sobie o silnikach. Może teraz czas
powiedzieć, jakie specjalizacje spotkamy w zespole pracującym
nad grą komputerową? Wiemy, że mamy różnych programistów, są
graficy, testerzy. Kto pracuje w GameDevie?

Zależy to od skali konkretnego projektu – niektóre specjalizacje są

bardziej specjalistyczne, a niektóre bardziej ogólne. Ogólnie wyróżniamy

cztery główne kategorie ról. Pierwsza to development, czyli programiści

– o nich już mówiliśmy. Druga to Art i do tej kategorii zaliczają się

ilustratorzy dwuwymiarowi, modelarzy 3D. Można tu też uwzględnić

animatorów, dźwiękowców, ludzi, którzy komponują muzykę albo

przygotowują dźwięki (chociaż oni upieraliby się, że tak zwany sound

effects to jest oddzielna kategoria).

https://devmentor.pl/

Trzecia kategoria to design, czyli projekt. I tutaj istotne jest to, że

zazwyczaj w przypadku gier, ludzie, którzy wymyślają to, na czym gra

ma polegać i jak ona działa, to nie ci sami ludzie, którzy programują tę

grę. Mamy tutaj tzw. game designerów, level designerów czy

monetization designerów. Są to ludzie, których zadaniem jest tak

zaprojektować grę, żeby była ciekawa, wciągająca, albo nawet

uzależniająca. Wymyślają poszczególne mechaniki gry, dokumentują to i

na tej podstawie powstają wytyczne do pracy dla programistów. Ostatnią

specjalizacją jest testowanie. Tutaj mówimy przede wszystkim o QA

testerach, czyli ludziach, którzy w kółko grają w nasze gry i wyszukują

błędy, edge-case'y. Stoją na straży tego, żebyśmy nie wypuścili czegoś

nieakceptowalnego, jeśli chodzi o poziom.

Mam wrażenie, że ostatnio w GameDevie chyba brakuje tych
pozycji. Często gry wyglądają, jakby to gracze mieli je testować
zamiast studiów.

Niestety tak. W segmencie AAA częstą pułapką jest to, że jest jakiś

termin ustalony przez zarząd i trzeba go dotrzymać. Nawet jeśli grze

przydałoby się jeszcze 3 miesiące poprawek, wydawca chce ją wypuścić

i zarabiać od razu. Przez ostatnie lata wiele firm przez takie podejście

wiele straciło. Natomiast będąc trochę adwokatem diabła, trzeba

przyznać, że złożoność gier, czyli to ile elementów ruchomych znajduje

się w niej, na przestrzeni ostatnich 20-30 lat wzrosła nie liniowo, tylko

wręcz wykładniczo. Siłą rzeczy, wytestowanie wszystkiego w danej grze

bywa niewykonalne. Zwłaszcza jeżeli mówimy o tak bardzo

skomplikowanych grach, jak np. grach RPG, takich jak Baldur's Gate 3

czy właśnie Wiedźmin 3.

https://devmentor.pl/

Jeżeli np. porównamy dzisiejsze gry RPG do gier RPG sprzed 20-30 lat,

to ilość contentu i złożoność tych mechanik jest nieporównywalny.

Solidne przetestowanie takiej gry w ramach budżetu jest wręcz

niemożliwe i nieuchronne jest to, że wydamy grę, która będzie w stanie

niedoskonałym i gracze doszukają się tego, czego my byśmy nawet nie

podejrzewali, bo gracze potrafią wymyślić i znaleźć naprawdę niezłe

rzeczy. Taka niestety jest specyfika tego, gdy pracujemy nad coraz to

ambitniejszymi, większymi, bardziej skomplikowanymi grami –

prawdopodobieństwo wypuszczenia czegoś, co jest wadliwe w

mniejszym bądź większym stopniu rośnie. Jednak jest pewna różnica

pomiędzy wypuszczeniem czegoś, gdzie nie do końca jesteśmy

świadomi pewnych błędów, a w pełni świadomym wypuszczeniem gry,

która jest po prostu w stanie nieakceptowalnym.

To pewnie jeszcze do tego wrócimy. Ja tylko dopowiem, że
przerwałem ci na etapie testerów, a są jeszcze osoby zarządzające
tym całym procesem.

Tak, jest jeszcze kadra zarządzająca – piąta kategoria. I tutaj jest dość

różnie, ponieważ niektóre firmy przyjmują model znany typowo z firm IT,

czyli na przykład robią Agile albo Scrum i wtedy mamy Project

Managera, albo Scrum Mastera. W praktyce, rzadko w pełni ich

przestrzegają. Jeszcze chyba ani razu na przestrzeni 10 lat nie byłem w

Scrumie, tylko zawsze było to pełne kompromisów. Częściej spotyka się

podejście typowe dla GameDevu – rolę Game Producera, który z jednej

strony zarządza tą grą, ale także stoi na szczycie decyzyjności, jeśli

chodzi o kształt gry i o jej projekt. Często ludzie, którzy zarządzają

projektami tworzenia gier, oprócz kompetencji zarządzania, mają też

https://devmentor.pl/

kompetencje wynikające z pracy nad grami: projektowanie,

programowanie, czasami art. Natomiast z tego, co obserwuję, zazwyczaj

są to byli projektanci, czasami byli programiści. Zazwyczaj jednak są to

byli projektanci, bo programowanie jest w procesie robienia gier do

pewnego stopnia rzeczą wtórną. Rzeczą pierwotną jest projekt gry, a

programowanie jest tylko implementacją tego projektu.

Mogę jeszcze dodać, że oprócz tych 4-5 głównych kategorii ról jest

jeszcze całe mnóstwo ról, które są bardzo specyficzne do

poszczególnych projektów. W dużych grach mobilnych pracują analitycy

i projektanci, których jedynym zadaniem jest analizowanie danych

zebranych przez grę, przez analitykę gry, sprawdzenie tego, co gracze

robią, w które elementy gry grają, a w które nie grają, jak długo grają, w

jakich porach dniach. Jest całe mnóstwo danych zbieranych przez gry,

które następnie analitycy zbierają, wyciągają wnioski i potem starają się

iteracyjnie usprawnić tę grę. Cały czas pracują i dokładają swoją

cegiełkę do projektu gry, który potem stanowi zestaw wytycznych dla

programistów.

Natomiast w środku gier AAA pojawiają się często bardzo specyficzne

specjalizacje wewnątrz już istniejących specjalizacji. Gdy mamy np.

Unreal Engine Developera, to w dużych projektach AAA powstają

specjalizacje np. Developera AI, który zajmuje się zachowaniem postaci

w grze. Jest też np. developer odpowiadający tylko i wyłącznie za

kamerę, za to, jak ona działa, jak się porusza, jak reaguje na różne

czynności gracza.

W przypadku artystów są artyści, tzw. character artists, którzy zajmują

się tylko postaciami. Mamy environment artists, którzy zajmują się tylko

https://devmentor.pl/

elementami otoczenia. Są też lighting artists, którzy zajmują się

rozstawianiem i regulowaniem światełek na poszczególnych scenach,

tak aby wszystko wyglądało filmowo. Im większy projekt i budżet, tym

większa specjalizacja. Natomiast w projektach o niższym budżecie

idziemy raczej w generalizm.

Czyli takie specjalistyczne role pojawiają się dopiero na wyższych
poziomach? Juniorzy raczej ich nie dostają?

Nie, absolutnie. Tutaj jest taka stara zasada, że zanim będziemy biegać,

najpierw trzeba chodzić. Więc najpierw trzeba zdobyć ogólne

doświadczenie jako programista – dotrzeć do poziomu silnego mida albo

najlepiej doświadczonego seniora jako generalista. Dopiero wtedy jest

ten moment, w którym decydujemy o tym, co chcemy robić dalej po

seniorze. Tutaj możemy obrać jakąś konkretną specjalizację, jeżeli np.

widzimy jakąś niszę w branży, w której chcemy się zadomowić bardziej

na stałe. Niektórzy deweloperzy decydują się pójść w role bardziej

producenckie, zarządzające. Natomiast juniorzy pozostają generalistami

przez całość swojego juniorstwa.

To skoro zahaczyliśmy o ten temat, to powiedzmy może o tym, od
czego warto zacząć naukę, aby nie wpaść w taki ślepy zaułek i po
paru miesiącach wytężonej pracy nie myśleć o porzuceniu tego
tematu? Jak do tego podejść, żeby osiągnąć sukces?

Opowiem o tym, bazując stricte na ścieżce Unity. Zanim w ogóle

weźmiemy się za Unity i za gry, w pierwszej kolejności polecam, aby

nauczyć się programowania jako takiego – zacząć naukę C#, nauczyć

https://devmentor.pl/

się składni, nauczyć się później programowania obiektowego, zdobyć

pewną wiedzę teoretyczną dotyczącą programowania. Mówię tutaj o

takich rzeczach jak dobre praktyki, wzorce, antywzorce, solid. Może się

to wydawać na początek trochę mijające z celem: dlaczego uczymy się o

jakiś dziwnych zasadach i prawidłach, gdy ja chcę po prostu robić gierki.

Natomiast prawda jest taka, że gra komputerowa to jest program

komputerowy, który się programuje. Jeżeli zaczniemy najpierw w Unity i

zaczniemy się uczyć o wszystkich rzeczach, które dotyczą Unity, to

przytłoczy to nas, bo wtedy mamy cały wór wiedzy związany z Unity i

cały wór wiedzy związany z programowaniem jako takim, którego nie

opanowaliśmy.

Widziałem kilka takich przypadków, gdzie ktoś zaczynał najpierw z Unity,

a dopiero potem douczał się o programowaniu i te osoby bardzo

kluczyły. Przede wszystkim jedyne co były w stanie robić to korzystać z

gotowców, coś posklejać i może czasami nawet coś by z tego

wychodziło, ale ani to się nie nadawało do wydania na rynek, ani to się

nie nadawało do długoterminowego rozwoju, a co najgorsze twórcy

takich dzieł nie rozumieli w ogóle na czym to polega, jak to działa. To się

totalnie mija z celem i jest to tylko zmarnowany czas. Stąd zawsze

powtarzam, żeby najpierw nauczyć się programowania, a dopiero jak

opanujemy programowanie, przynajmniej do poziomu średnio

zaawansowanego, wtedy możemy już przejść do specjalizacji Unity i do

tworzenia gier.

I co dalej? Jeżeli mamy już te fundamenty – od czego warto zacząć,
jeśli chodzi o Unity? Co trzeba robić i wiedzieć na temat
komputerów, żeby po prostu wiedzieć jak osiągnąć nasz cel

https://devmentor.pl/

utworzenia pierwszej gry czy znalezienia pierwszej pracy?

Jeśli chodzi o wiedzę na temat komputera, to na początek warto w ogóle

umieć go obsługiwać, wiedzieć czym jest plik, czym jest link, mieć jakąś

świadomość na temat tego, jak działa sprzętowo, wiedzieć co to jest

procesor CPU, karta graficzna GPU, czym jest RAM, czym różni się

HDD od SSD itp., ponieważ te wszystkie rzeczy mają znaczenie

zarówno w programowaniu, jak i w programowaniu gier, bo gry

oznaczają się tym, że musimy bardzo dbać o dobrą wydajność tego, co

robimy. Na poziomie juniorskim głównie polecam zapoznać się z tym, jak

jest skonstruowana pamięć RAM, jak ona działa, na czym polega podział

pomiędzy stertą a stosem. W ramach kursu robimy to przy okazji

omawiania typów referencyjnych i typów wartościowych. Na poziomie

juniorskim nie widzę potrzeby zagłębiania się w bardziej specjalistyczną

wiedzę o komputerach, chyba że w ramach własnej ciekawości czy

naszego rozwoju.

Jeśli chodzi o samo programowanie gier Unity, tam pojawia się całe

mnóstwo narzędzi, za pomocą których możemy naszą grę posklejać.

Jest cały silnik fizyczny z detekcją kolizji, z nadawaniem sił i patrzeniem

jak poszczególne obiekty, poszczególne ciała reagują na te siły. Jest

cała tak zwana przestrzeń kartezjańska, czyli przestrzeń trójwymiarowa,

w której nasze obiekty rozmieszczamy. To jest to słynne XYZ, trzy

numerki, które są koordynatami. Jeżeli ktoś grał np. w Minecrafta i zgubił

się w swoim świecie i odpalił F3, żeby zobaczyć tam te numerki, to jest

to właśnie przestrzeń kartezjańska.

Jeśli chodzi o wiedzę z fizyki, potrzebna jest nam wiedza na poziomie

liceum podstawowego, czyli przede wszystkim dynamika newtonowska,

https://devmentor.pl/

prawa dynamiki newtona, rozumienie tego, czym jest przyspieszenie,

czym jest masa ciała, czym jest siła. To wszystko przyda się, zwłaszcza

jeżeli będziemy pracowali przy grach, które chociaż troszeczkę

wykorzystują elementy silnika fizycznego.

Warto zapoznać się z przynajmniej podstawowymi terminami z innych

dziedzin, czyli nie tylko skupiamy się na programowaniu, ale także

interesujemy się odrobinę tym, na czym polega grafika 2D, grafika 3D

oraz projektowanie, głównie dlatego, że nieuchronnie, zwłaszcza jeżeli

będziemy pracować zawodowo, będziemy mieli do czynienia z ludźmi z

innych specjalizacji, będziemy z nimi współpracować. I warto mieć tę nić

porozumienia w oparciu o pewne wspólne rozumienie pewnych pojęć –

mimo że nie jestem i nie będę artystą, to wiem czym jest tekstura, czym

jest polygon, czym jest normal map, light map. Tak samo interesując się

game designem – wiem co to jest gameplay lub game design pillars,

wiem co to jest GDD. I mimo że w mojej codziennej pracy jako

programista nie pracuję stricte na tych pojęciach, to na tyle często mam

z nimi przecięcie, głównie w komunikacji z innymi ludźmi, że po prostu

warto mieć tą wiedzę i świadomość.

Wspomniałeś trochę o pojęciach z fizyki, co mam nadzieję nikogo
nie przeraziło – pewnie same pojęcia są straszne, ale pracując
trochę dłużej w branży jest to naturalne.

Chciałbym cię teraz zapytać o to, jakie są wymagania dla osób,
które startują w branży? Co warto rozważyć przy rozsyłaniu CV? Co
warto do niego dodać? Co nas wyróżni na tle konkurencji?

https://devmentor.pl/

Patrząc z perspektywy Junior Unity developera, który szuka swojej

pierwszej pracy, moim zdaniem ważny jest angielski na poziomie

komunikatywnym zarówno w mowie jak i w piśmie, ponieważ bardzo

dużo projektów rozwijają firmy i zespoły międzynarodowe, więc ten

angielski pojawi się na pewno na daily stand-upach i spotkaniach.

Niemalże cała dokumentacja oraz wartościowa wiedza odnośnie do

game developmentu, Unity i programowania jest w języku angielskim,

więc po prostu musimy znać ten angielski na tyle dobrze, żeby móc

czytać ze zrozumieniem. Raz na jakiś czas będziemy też taką

dokumentację pisać, więc tutaj ponownie, potrzebny jest składny

angielski. Nie ma się niczym stresować, bo sama nauka programowania

i Unity rozwija angielski: czytamy dokumentacje, uczymy się

programowania, gdzie pojawia się mnóstwo angielskich słówek.

Będziemy też oglądać tutoriale czy inne ciekawe materiały np. na

YouTube po angielsku, więc kompetencje językowe będą rozwijały się

też mimochodem.

Natomiast jeśli chodzi o jeszcze inne wymagania wobec Junior Unity

Developera to konieczny jest C#, o którym już wspomniałem i jego

znajomość przynajmniej na poziomie średnio zaawansowanym.

Potrzebna jest też znajomość rzeczy ogólnoprogramistycznych takich

jak: paradygmaty programowania, przede wszystkim programowanie

obiektowe, troszeczkę programowania funkcyjnego, znajomość zasad

solid, dobrych praktyk, złych praktyk, wzorców projektowych – nie tylko

enumeratywnie, w taki sposób, że potrafię je wymienić z głowy, ale też

jestem w stanie na ich temat trochę podyskutować. To jest taka częsta

pułapka, która zastawiana jest na Tech Interview, czyli właśnie na

technicznych rozmowach o pracę, gdzie np. pytamy kandydata o jakieś

https://devmentor.pl/

trzy wzorce projektowe i zazwyczaj ten kandydat jest w stanie je

wymienić, ale gdy zadamy mu pytanie OK, co o nich sądzisz, dlaczego

warto je stosować albo kiedy nie warto ich stosować, to tutaj niektórzy

kandydaci odpadają, bo wykuli te terminy na blachę w takim typowo

szkolnym stylu, a nie o to chodzi.

Chodzi o to, żeby przede wszystkim je rozumieć, umieć je zastosować w

odpowiednich momentach. Jeśli chodzi o samo Unity, to w mojej ocenie

Junior Unity Developer powinien być w stanie od zera zrobić jakąś

prostą grę przy pomocy tego silnika, np. grę memory, grę w odbijanie

piłeczki i skakanie nią, może jakąś prostą platformówkę. Mówię tu

naprawdę o bardzo prostych rzeczach, ale chodzi o to, że jestem już w

stanie zrobić coś od początku do końca, coś co jest grywalne, co

posiada jakąś wartość jako wytworzony kod, coś co jest napisane w

sposób czysty, schludny, zdatny do dalszego rozwoju, do dalszego

rozwijania rozbudowywania. Potrzebna jest też wiedza związana z

układaniem UI, ponieważ programiści Unity często układają i następnie

programują interfejs użytkownika, czyli właśnie UI, co dzieje się w dosyć

odrębny sposób, inny niż taki typowy front-end.

Przydaje się też wiedza na temat optymalizacji wydajności gry, ponieważ

właśnie wydajność jest ogólnie bardzo istotna w procesie tworzenia gier

komputerowych – jeżeli nasza gra będzie się zacinać, nie będzie

utrzymywała wysokiego klatkarza, to ludzie nie będą chcieli w nią grać.

Stąd pewne kompetencje związane z tym, jak analizować wydajność

gier, jakie praktyki stosować, żeby unikać problemu z wydajnością. Te

elementy wprowadzam w ramach kursu dla Junior Unity Developera.

Mogę dodać jeszcze takie typowo akademickie rzeczy. Wspomniałem

https://devmentor.pl/

już o przestrzeni kartezjańskiej i dynamice Newtona. Na poziomie liceum

poziomu podstawowego, nie jest potrzebna całość materiału, ale pewne

konkretne kategorie fizyki, takie jak dynamika czy przestrzeń

kartezjańska z matematyki. Z tymi elementami będziemy mieć często do

czynienia. W Unity wektory oraz przestrzeń kartezjańska są używane do

rozmieszczania obiektów na scenie, więc będziemy mieli z tym do

czynienia praktycznie non stop.

Wiele projektów przynajmniej w pewnym stopniu wykorzystuje silnik

fizyczny, więc przydają się też te prawidła związane z dynamiką

Newtona. Natomiast pomijając to, nie ma potrzeby np. zgłębiania

matematyki akademickiej, na przykład kwestii związanych z obliczeniem

macierzy. Jest to wykorzystywane w grafice 3D, ale przeciętny Unity

Developer nie zajmuje się w ogóle grafiką 3D, renderowaniem grafiki 3D.

Nie jest to już konieczne, nie musimy być jakimś niesamowitym

geniuszem matematycznym, żeby do tego zawodu wejść.

Jeszcze dopytam – jeśli chodzi o dynamikę Newtona: czy to działa
tak, że mamy siłę, odbijamy się i intuicyjnie wydaje nam się, że kąt
odbicia będzie podobny? Czy jednak faktycznie trzeba to dokładnie
obliczać?

Jeśli chodzi o same obliczenia tego, jak fizyka działa sama w sobie, tym

zajmuje się silnik Unity, silnik fizyczny wewnątrz silnika Unity. Natomiast

my musimy przede wszystkim rozumieć co się dzieje, dlaczego i jak

wywołać pożądany efekt. Jeżeli np. robimy taką przykładową gierkę,

gdzie mamy kuleczkę, która się turla i chcemy, żeby ona podskakiwała,

to musimy wiedzieć, że jeżeli chcemy, żeby kuleczka podskoczyła, to

musimy jej przyłożyć siłę skierowaną w górę i musi to być tak zwany

https://devmentor.pl/

impuls, czyli siła przyłożona natychmiastowo, a nie rozłożona w czasie,

bo wtedy mamy efekt właśnie podskoczenia, a nie powolnego

wznoszenia się do góry. Musimy też pamiętać o tym, że cały czas jest

grawitacja, więc musimy tym naszym skokiem, siłą tego skoku

przezwyciężyć grawitację. Musimy sobie zdawać sprawę z tego, że jeżeli

ustawimy pewną elastyczność (po angielsku mówimy na to bounciness,

czyli sprężystość danego obiektu) i jeżeli ta kuleczka spadnie z pewną

siłą na podłoże, to odbije się ona od niej. Ta wiedza nie jest nam

potrzebna do tego, żeby w głowie bądź w komputerze robić całą

symulację fizyczną, bo to jest zautomatyzowane, ale musimy być

świadomi tego w oparciu o jakie zasady to działa, aby osiągnąć

pożądany przez nas efekt.

No i właśnie, to co powiedziałeś, jest dla mnie dużo bardziej
zrozumiałe niż sama definicja czy nazwa fizyczna. To mnie mocno
zaciekawiło.

Ale zostawmy fizykę i idźmy dalej. Wspomnieliśmy już o tym, co
powinien umieć początkujący programista Unity. Chciałbym cię
teraz zapytać: czy pomysł na własną grę opublikowaną na Steamie
może być przepustką do kariery? I w ogóle – jakie projekty warto
robić do portfolio, żeby wyróżnić się na tle konkurencji?

Steam to platforma dystrybucyjna, sklep do sprzedaży gier. Jeśli nie

mamy gry gotowej i wartej sprzedaży, to wrzucanie jej na Steama jako

portfolio mija się z celem. Tym bardziej że dziś na Steamie bardzo

trudno się wybić – codziennie wychodzą tam dziesiątki, jeśli nie setki

https://devmentor.pl/

nowych gier. Do tego, żeby wstawić grę na Steama, trzeba mieć

działalność gospodarczą, podpisać trochę papierów i zapłacić 100

dolarów za każdą grę. A to już nie jest mała kwota.

Do budowania portfolio lepsze są inne platformy – np. itch.io albo

GameJolt. One działają głównie w oparciu o gry przeglądarkowe, a w

Unity łatwo można wyeksportować grę do formatu WebGL, który osadza

się na stronie. Czasami trzeba dostosować kilka elementów gry, ale

bardzo często jest to plug and play. Jeżeli chcemy robić portfolio, warto

założyć tam profil, zrobić jedną, dwie, może trzy gry demonstracyjne i

wrzucić je tam i wtedy ktoś może w nie zagrać. Polecam też tworzyć

publiczne repozytoria na GitHubie, ponieważ wtedy jesteśmy w stanie

pokazać, jak działa dana gra – czy nasz kod jest rozwijalny, czy jest

czysty, jeśli chodzi o dobre praktyki i swoją strukturę, czy ma dobrą

architekturę. W ten sposób pokazujemy, zwłaszcza ewentualnym

programistom, którzy biorą udział w danej rekrutacji oceniając nas, czy

się nadajemy, czy potrafimy dobrze pisać kod i dobrze posługiwać się

Unity. Właśnie przez GameJolt czy Itch.io możemy pokazać jak

pracujemy w praktyce.

Jeśli chodzi o takie projekty, od razu dodam, że warto pamiętać o

zasadzie: less is more – mniej znaczy więcej. Warto się tym kierować

jako początkujący twórca, ponieważ niemalże każdy początkujący

twórca gier (ja też jestem tego przykładem), od razu wpada na pomysł,

że pierwszym projektem będzie RPG z ogromnym, otwartym światem,

tysiącem klas i questów.

Problem w tym, że takie gry powstają latami, w zespołach liczących

kilkadziesiąt czy nawet kilkaset doświadczonych osób. Dlatego lepiej

https://devmentor.pl/

powściągnąć ambicje i wymyślić coś prostego, co faktycznie da się

zrobić od początku do końca – w miesiąc, dwa, trzy, ale nie dłużej.

Ważne, żeby było to dopracowane i ukończone.

Wiele gier indie, czyli tych niezależnych, odniosło sukces, nie dlatego, że

były duże albo bardzo ambitne, tylko dlatego, że opierały się często o

dosyć prosty pomysł na jedną kluczową mechanikę dopracowaną do

perfekcji. Często to wystarcza, żeby odnieść sukces. I zwłaszcza w

przypadku projektów do portfolio, warto kierować się zasadą, że

wymyślam stosunkowo prostą rzecz, ale wykonuję ją najlepiej, jak

potrafię. I to na pewno będzie znacznie lepsze niż zrobienie po łebkach

czegoś bardzo wielkiego albo mającego potencjał na coś wielkiego.

Nie wiem czemu, ale jak mówiłeś o RPG, od razu pomyślałem, że
fajnym projektem mogłyby być szachy czarodziejów. Może to nie
jest bardzo proste, ale na pewno mocno ograniczone.

Tak, taką dobrą inspiracją są minigry w większych grach. Zabawnie, że

powiedziałeś o szachach czarodziejów – ja akurat ostatnio grałem na

PlayStation 3 w grę z czasów dzieciństwa „Harry Potter i Zakon

Feniksa”. I właśnie tam była minigra szachy czarodziejów, gdzie mamy

normalne szachy, ruchome animowane figurki i gdybyśmy wyizolowali to

od całej reszty gry i trochę to rozbudowali i dopieścili, to może z tego

powstać cała gra, która może być co najmniej dobrym projektem do

portfolio, a być może nawet może się świetnie nadawać jako niezależny

projekt komercyjny.

Świetnym przykładem jest gra z zeszłego roku Balatro. Jest to gra

karciana, bazująca na zasadach Pokera, nie implementująca nawet w

https://devmentor.pl/

pełni gry w Pokera, więc podobnie – założenie jest banalnie proste, ale

ilość wariantów rozgrywki, które są tam zapewnione, plus taka ogólna

otoczka i sam tak zwany gameplay loop czyli pętla gry, sprawiły, że ta

gra jest tak świetna, tak wciągająca, że sprzedała się w jakichś

niebotycznych ilościach egzemplarzy i chyba nawet dostała jakąś

nagrodę na gali The Game Awards. Nie pamiętam, która to była

dokładnie nagroda, ale chyba była to najlepsza gra niezależna roku.

Prosty pomysł, ale świetne wykonanie.

Jeżeli ktoś nie ma pomysłu, to szachy czarodziejów mogą być
rozwiązaniem.

A teraz chciałbym przejść do trochę innego tematu, porozmawiać o
najczęstszych mitach o pracy w GameDevie. Trochę
wspomnieliśmy o znajomości grafiki 3D, więc już wiemy, że nie jest
potrzebna – ale co np. z wykształceniem wyższym albo innymi
kwestiami, które mocno blokują ludzi, a wcale nie muszą być
prawdziwe.

Jeśli chodzi o wykształcenie wyższe, to tego wymogu nie ma już od

dawna. Ja np. nie mam wykształcenia wyższego i na przestrzeni 10 lat

pracy w branży chyba ani razu nikt nie zadał mi pytania o moje

wykształcenie, więc w przypadku GameDevu nie ma ono znaczenia w

rolach deweloperskich. Być może w rolach artystycznych ukończony

ASP może się przydać, ale jest to inna specjalizacja, więc trudno mi

powiedzieć. Natomiast rzeczywiście studiów robić nie trzeba. Istnieją

pewne kierunki tworzone z myślą o programowaniu i projektowaniu gier

https://devmentor.pl/

głównie na uczelniach prywatnych. Moim zdaniem to trochę strata

czasu. Myślę, że znacznie lepiej będzie, jeżeli sami albo w ramach

mentoringu spędzimy te pół roku/rok ucząc się stricte programowania

gier i później będziemy pracować nad swoim warsztatem, będziemy się

rozwijać i tworzyć. Wybierając ten długi i w wielu miejscach przestarzały

schemat akademicki, być może nauczymy się czegoś przydatnego, ale

po drodze zahaczymy jeszcze o mnóstwo rzeczy, które nie będą nam

ani potrzebne, ani ważne w naszej pracy.

Parę razy przeglądałem programy takich właśnie kierunków i często

mamy tam wszystko i nic: jest programowanie w Unity i w Unreal, grafika

3D i jeszcze inne przedmioty, gdzie tak naprawdę nie jest wartościowe

to, żeby znać każdą z tych rzeczy po trochu, tylko żeby wybrać jedną z

nich i się w niej wyspecjalizować.

O byciu człowiekiem orkiestrą trochę już wspominałem – obieramy

raczej jedną ścieżkę i w niej się rozwijamy. Jeśli chcemy poznać inne

obszary, np. grafikę, albo game design to nic nie stoi na przeszkodzie,

ale jednak staramy się mieć jedną główną ścieżkę, którą podążamy i

wokół której będziemy budować swoją karierę zawodową. Zdarzają się

w tej branży „ludzie orkiestry” — jest kilka gier głównie niezależnych,

które zostały stworzone w pełni przez pojedynczych deweloperów. Są to

np. Stardew Valley, Spelunky, Papers, Please, ale to są wyjątki od reguły

i pomijając naprawdę bardzo specyficzne przypadki, uważam, że

znacznie lepiej jest znaleźć swoją ścieżkę i nią podążać. Później

możemy znaleźć innych ludzi, którzy też podążają swoimi ścieżkami:

programistę, grafika, dźwiękowca, jakiegoś projektanta i możemy

połączyć się w ekipę i wspólnie stworzyć jakiś projekt i zrobić coś

https://devmentor.pl/

fajnego, nawet jeżeli są to osoby początkujące.

I może dodam w tym miejscu, bo już o tym wspominałeś – ta fizyka
i matematyka wcale nie są tak bardzo skomplikowane, jak mogłoby
się wydawać. Dużo robi za nas sam silnik. My raczej powinniśmy
znać podstawowe koncepcje i, jak mówisz, to wystarczy, żeby
poradzić sobie w Unity, prawda?

Tak, dokładnie. Wiele z tych rzeczy można opanować już w trakcie pracy

z Unity. Przykładowo – przestrzeń kartezjańska i obliczenia na

wektorach. Zanim zacząłem pracę z Unity, praktycznie w ogóle tego nie

rozumiałem. Natomiast korzystając z tych narzędzi w praktyce, po prostu

się tego nauczyłem. I powiem szczerze – znacznie lepiej i skuteczniej

niż w szkole, bo tutaj wiedza była od razu do czegoś potrzebna. To nie

była sucha teoria dla samej teorii, tylko coś, co faktycznie

wykorzystywałem. Dzięki temu nauczyłem się tego raz, a dobrze – i

korzystam z tego do dziś.

OK, to może jeszcze jedna taka specyficzna rzecz odnośnie do
GameDevu – czy w tej branży pojawia się coś, co jest mało
widoczne albo rzadko się o tym mówi – jak na przykład słynny
crunch? Czy są inne rzeczy, na które warto być przygotowanym,
jeśli chce się pracować w GameDevie?

Jeśli chodzi o crunch, to w mojej ocenie jest to w sporej mierze relikt

przeszłości – i bardzo dobrze. Poza tym dotyczył głównie większych

studiów, tzw. AAA, gdzie stawki są wysokie, a terminy sztywne i

niezależnie od wszystkiego trzeba ich dotrzymać. Natomiast na

https://devmentor.pl/

poziomie, na którym ja pracowałem – czyli gry mobilne i niezależne –

przez 10 lat w branży ani razu nie doświadczyłem crunchu. Czasami z

własnej, nieprzymuszonej woli podejmowałem się dodatkowych zadań,

ale to zawsze była moja decyzja – czy to dla większych zarobków,

rozwoju, czy pracy nad własnym projektem, gdzie sam ustalam ile

pracuję. Od crunchu się odchodzi i stara się go unikać.

To może powiedzmy co to jest, bo chyba nie powiedzieliśmy.

Crunch to określenie na nadgodziny. Zwykle pojawia się w końcowych

fazach produkcji danej gry, gdy nieuchronnie zbliża się termin jej

wydania, a gra ma np. mnóstwo błędów albo jest niegotowa. Na przykład

podczas pracy nad Wiedźminem 3 programiści potrafili pracować w

weekendy po kilkanaście godzin dziennie. Było to bardzo wyniszczające

dla ich zdrowia, zarówno fizycznego, jak i psychicznego. I, mimo że

Wiedźmin 3 świetnie się udał, mimo tego, że odniósł sukces komercyjny,

a zespół później dostał duże bonusy za wkład w ten projekt, to bardzo

wielu utalentowanych i doświadczonych ludzi odeszło po skończeniu

Wiedźminie 3 czy Cyberpunku, bo mieli dość.

Od samego początku, jak wspomnieliśmy o tym, że CD Projekt
przeszedł na Unreal, miałem w głowie pytanie – czy to nie było tak,
że wielu doświadczonych programistów pracujących wcześniej nad
ich własnym silnikiem odeszło, i dlatego firma musiała sięgnąć po
Unreal? W końcu łatwiej jest pozyskać programistów z rynku,
którzy już znają ten silnik. Myślisz, że to był główny powód tej
zmiany?

Myślę, że nie główny, ale na pewno miał na to wpływ. Jeżeli masz

https://devmentor.pl/

własną technologię i kluczowe pięć osób odpowiadających za tę

technologię odchodzi, to masz problem. Nie jest też tak, że nagle

stwierdzili, że przechodzimy na Unreal i wszystko jest OK. Niestety –

Unreal Engine jest specyficznym silnikiem i zwłaszcza na potrzeby

dużych produkcji studia muszą go mocno dostosowywać. I były takie

przecieki z wewnątrz, że prace nad Wiedźminem 4 postępują znacznie

wolniej niż zakładano, ponieważ właśnie w wyobrażeniu kadry

zarządzającej, przejście na Unreal miało być łatwe – teraz mamy silnik i

robimy grę. Okazało się, że silnik też trzeba przerobić na własne

potrzeby, mówię tutaj zwłaszcza o potrzebach posiadania dużego,

otwartego świata.

Ciekawym przykładem jest Kingdom Come: Deliverance – czeska gra z

podobnego gatunku, konkurent Wiedźmina, albo raczej gra z podobnego

segmentu rozgrywkowego. Tam od początku zdecydowano się na

CryEngine, choć programistów znających ten silnik jest bardzo mało.

Skąd taka decyzja? CryEngine znacznie lepiej sprawdza się przy

otwartych światach niż Unreal. To był kompromis, ale twórcy Kingdom

Come uważają, że opłacalny. I dziś, pracując nad Kingdom Come

Deliverance 2, otwarcie mówią, że tej decyzji nie żałują, a wręcz

krytykują wybór CD Projektu, twierdząc, że przejście na Unreal Engine 5

było błędem.

Pewnie się o tym przekonamy tylko pytanie kiedy? Znasz jakąś
wstępną datę premiery?

Strzelam, że nie wcześniej niż 2028.

OK, to jeszcze trochę poczekamy. Zastanawiam się, czy nie okaże

https://devmentor.pl/

się, że w ogóle zmienią silnik?

Nie. Jest już trochę za daleko w tym procesie, żeby dokonywać czegoś

takiego, plus oni już ten silnik, można powiedzieć, „ujarzmili”. Po prostu

była to pewna praca, którą musieli na początku wykonać i tyle.

Natomiast na pewno nie ma co się spodziewać premiery w 2026 roku,

bo prawie wszystkie gry, które mają wtedy wyjść, są już zapowiedziane.

Z Wiedźmina 4 mieliśmy póki co tylko jeden trailer i jedną pokazówkę,

gdzie nawet nie była to rozgrywka, tylko bardziej demo technologiczne.

Więc bazując na moich obserwacjach i doświadczeniu, po prostu

obserwowania tej branży na przestrzeni lat, strzelam, że 2027 to jeszcze

za wcześnie, więc raczej optowałbym za 2028.

No dobrze, to wracając jeszcze do tego tematu, o którym sobie
rozmawialiśmy: mamy tego cruncha, który w zasadzie może już nie
występować, więc nie musimy się tego jakoś bardzo obawiać. Jest
jeszcze coś, o czym powinniśmy wiedzieć, jeżeli chcemy wchodzić
do branży GameDev?

Tak, to jest zwłaszcza dla ludzi, którzy zastanawiają się nad wyborem

pomiędzy GameDevem a takim, nazwijmy to, zwykłym IT, czyli Software

Developmentem. Trzeba pamiętać o tym, że Game Development to jest

połączenie IT i branży rozrywkowej. Można wręcz powiedzieć, że to jest

przede wszystkim rozrywka — i to niesie ze sobą pewne konsekwencje.

Jedną z nich jest to, że w GameDevie jest znacznie więcej specjalizacji

nieprogramistycznych niż w Software Devie. Bo w takim typowym

Software Devie mamy programistów, jakichś projektantów, może

analityków — i w zasadzie tyle. Natomiast w GameDevie jest całe

mnóstwo artystów, projektantów, dźwiękowców, narrative designerów,

https://devmentor.pl/

writerów. Jest tego naprawdę sporo. Więc trzeba pamiętać, że jeśli

idziemy do GameDevu, będziemy pracować w bardzo zróżnicowanym

środowisku, z ludźmi pełniącymi różne role.

I druga rzecz jest taka, że — co tu dużo mówić — warto, jeżeli chcemy

pracować w grach, być graczem. Nie jest to warunek konieczny, ale na

pewno bardzo pomocny. Dlatego że często w dyskusjach o tym, jak ma

działać jakaś mechanika, jak ma funkcjonować dana gra, kiedy jesteśmy

na etapie wysokopoziomowego projektowania, nie wymyślamy

wszystkiego od zera. Inspirujemy się istniejącymi tytułami. Trzeba więc

być w grach trochę „oczytanym”, żeby zrozumieć kontekst. Jeśli ktoś

powie No dobra, to słuchajcie — robimy otwarty świat jak w Zeldzie:

Breath of the Wild, walkę jak w God of War Ragnarok, a arche jak w

Borderlands 2, to ktoś, kto grał albo chociaż widział, wie, o co chodzi i od

razu ma obraz w głowie. A ktoś, kto nie gra i nie śledzi branży…

To zapisuje na kartce i szuka.

Tak, i jest trochę w tyle. To wygląda tak jak w każdej branży – raczej nie

zostaje się recenzentem samochodów, jeśli nie zna się motoryzacji i nie

śledzi najnowszych trendów. Z grami jest podobnie. Nie oznacza to

jednak, że trzeba koniecznie grać w te same tytuły, nad którymi

pracujemy. Na przykład ja, mimo że sporą część mojej kariery spędziłem

przy grach mobilnych, sam gram w nie rzadko. Ale jestem w nich na tyle

rozeznany, że kiedy ktoś mówi: zobacz, jak wygląda ta mechanika w

Royal Match, to wiem, o co chodzi. Jeśli ktoś wspomina, że robimy

match-three, to wiem, co to jest match-three. I podobnie jest z innymi

segmentami branży i grami w ogóle.

https://devmentor.pl/

To od razu zapytam, bo chodziło mi to po głowie – czy w
GameDevie jest tak, że można na przykład przeznaczyć godzinę czy
dwie tygodniowo na ogranie jakiejś gry, bo to nasz konkurent, i
mieć to w ramach pracy?

Raczej nie, chociaż czasami się tak zdarza, że przychodzi prośba

słuchajcie gramy w to i to, analizujemy i robimy jakieś notatki. Co prawda

tego typu zadania zazwyczaj dostają raczej projektanci i to na wczesnym

etapie ideacji, czyli właśnie wymyślania tej gry. Natomiast bazując na

danym projekcie, przede wszystkim też na organizacji, strukturze,

kulturze pracy, może się tak zdarzać. Na przykład ja pracując w jednym

projekcie właśnie gry mobilnej, w pewnym momencie mój team lead

poprosił się mnie: Mateusz, jakbyś mógł normalnie w godzinach pracy

ograć kilka poziomów w tym, w tym i w tym i zapisać swoje obserwacje,

bo my chcemy po prostu analizować konkurencję – i tak robiłem.

Natomiast raczej nie ma się co tego spodziewać. Myślę, że też mimo że

będziemy pracowali w branży gier, to z dużym zrozumieniem nie spotka

się wniosek o urlop na żądanie, bo akurat wychodzi np. Wiedźmin 4.

Mogłoby się okazać, że pół zespołu by nie pracowało.

Tak.

To wracając jeszcze do juniorów – chyba zewsząd pojawia się
temat AI, więc od razu zapytam: jak obecnie AI wspiera GameDev i
czy juniorzy mogą się czuć zagrożeni?

AI przejawia się w GameDevie tak naprawdę w każdej z jego

https://devmentor.pl/

specjalizacji. Artyści widzą modele językowe, które generują grafiki.

Tutaj bardzo mocno przyspiesza proces concept artu, gdzie zamiast

rysować cały poglądowy rysunek jakiejś postaci czy przedmiotu,

możemy go wygenerować i potem jedynie poprawić. Jeśli chodzi o

Game Design, to ChatGPT jest świetnym kompanem do pisania

dokumentów projektowych do gier, czy też właśnie wymyślania i

urozmaicania naszych pomysłów.

Jeśli chodzi o programistów, to tutaj przede wszystkim mamy narzędzie

takie jak Github, Copilot, JetBrains AI Assistant, czyli modele językowe,

które są dostosowane do pisania kodu. Co prawda jest pewna różnica

pomiędzy Software Devem a GameDevem. W Software Devie pojawiają

się bardzo autonomiczne IDE, takie jak Cursor czy Windsurf. W Unity, ze

względu na specyfikę tej technologii, ze względu na to, jak się w tej

technologii pracuje, dużo rzeczy układa się wewnątrz edytora, nie tylko

w kodzie – one za bardzo nie mają zastosowania. W związku z tym,

Unity samo pracuje nad własnym AI, które będzie osadzone wewnątrz

edytora, które na podstawie prompta będzie w stanie wygenerować

jakąś scenę, porozstawiać pewne elementy, wykonać za nas jakieś

powtarzalne czynności. Natomiast ze względu na tę specyfikę, jest to

trochę inna kultura pracy z AI niż w normalnym Software Devie.

Jeśli chodzi o mnie, korzystam z AI głównie, jeśli chodzi o auto

uzupełnianie kodu. Stosunkowo rzadko korzystam z promptingu. Wynika

to głównie z tego, że w większości przypadków nie tworzę nowych

mechanik totalnie od zera, ale rozwijam już istniejące, naprawiam błędy,

lekko je modyfikuję. Żeby nie popsuć niczego, wolę jednak mieć bardziej

bezpośrednią kontrolę, pisać kod i co najwyżej korzystać z auto

https://devmentor.pl/

podpowiedzi, autosugestii AI, aniżeli oddawać mu w pełni stery.

Może dopytam o tych juniorów. Skoro AI pomaga i przyspiesza
pracę, to myślisz, że pracy dla juniorów będzie mniej? Albo czy w
ogóle nie będą potrzebni?

Do pewnego stopnia rzeczywiście mniej jest pracy typowo juniorskiej, bo

zazwyczaj ta praca polegała na robieniu rzeczy na tyle prostych i na tyle

powtarzalnych, że można je powierzyć juniorowi, bo seniorowi nie chce

się ich wykonywać. I rzeczywiście te zadania zostały zautomatyzowane

przez AI. Natomiast jest jeszcze druga strona medalu – popyt na

seniorów był, jest i będzie, a żeby stać się seniorem, trzeba być najpierw

juniorem. Nie da się zostać seniorem przechodząc np. 5-letni kurs z

programowania. Seniorem zostaje się dzięki doświadczeniu pracy nad

prawdziwymi problemami, prawdziwymi projektami – to jest po prostu nie

do zastąpienia. Nieuchronnie gdzieś na początku tego układu musi być

junior, który wejdzie do branży, nabędzie doświadczenia i dopiero wtedy

stanie się seniorem, który jest tak bardzo pożądany na rynku.

Poza tym, juniorzy też mogą korzystać z AI. Co prawda tutaj zalecam

dużą dozę ostrożności, żeby nie za bardzo polecieć na fali tzw.

vibe-codingu, bo wtedy możemy mocno upośledzić nasze zdolności

pisania kodu i produkować kod, którego nie rozumiemy, który nie działa i

który na dłuższą metodę do niczego się nie nadaje. Jeżeli jednak

będziemy wykorzystywać te narzędzia w miarę sensownie i rozważnie,

to one będą przyspieszać naszą pracę, będą rozszerzały to, co jesteśmy

w stanie zrobić, będą często odblokowywały nas, bo zamiast zacinać

się, gdy czegoś nie wiemy, po prostu zapytamy Chat hej, jak to zrobić?

On rzuci nam kilka pomysłów, wybierzemy jeden i kontynuujemy z tym.

https://devmentor.pl/

Zauważyłem taki trend, że zwłaszcza studia, które nie mają dużego

budżetu, np. nie stać ich na seniora, wolą zainwestować właśnie w

juniora albo dwóch, dać im narzędzia AI i są wtedy w stanie wytwarzać

wartość, kontrybuować do takiego projektu.

To ciekawa koncepcja – rozumiem, że wtedy produkowanie takiej
gry trwa dłużej, może być więcej błędów, ale coś za coś? Przez to,
że junior zarobi mniej, docelowo może to się podobnie opłacać.

Tak, tutaj tak naprawdę jest kwestia tego, na jakie kompromisy chcemy

iść. Pewnie kojarzysz – jest taka strona internetowa, gdzie są trzy

przełączniki: szybko, tanio i dobrze i można włączyć tylko dwa na raz.

Nie widziałem, ale słyszałem koncepcję.

Jeżeli chcemy szybko i dobrze, to musimy zatrudnić seniora. Jeżeli nie

stać nas na seniora, to będzie wolno. A jeżeli chcemy szybko i bez

seniora, to musimy się liczyć z pewnymi kompromisami, jeśli chodzi o

jakość.

To lećmy dalej – jaki materiał lub książkę, polecisz osobie, która
chce spróbować swoich sił w GameDevie?

Akurat jeśli chodzi o książki, to być może jest to kwestia pokoleniowa,

ale książek o programowaniu nie czytam w ogóle. Jedyna książka o

programowaniu, jaką kiedyś przeczytałem (przeczytałem to dużo

powiedziane, przeczytałem pierwsze 50 stron, a potem rzuciłem ją w kąt

i przerzuciłem się na tutoriale internetowe) to była książka

wprowadzająca do C#. Natomiast jeśli chodzi stricte o GameDev, to

https://devmentor.pl/

mogę polecić kilka kanałów YouTube, które analizują gry zarówno z

punktu widzenia bardziej technicznego, jak i z punktu bardziej

projektowego. Moim ulubionym kanałem zdecydowanie jest Gamer

Makers Toolkit. Jest to kanał Brytyjczyka, Marka Browna i on od lat

bierze na warsztat zarówno gry niezależne, jak i gry AAA. Obserwuje je i

następnie analizuje jak coś działa, np. jak jest zaprojektowany system

skradania w grze Splinter Cell i jak na to reagują przeciwnicy. Bardzo

dobre źródło wiedzy i inspiracji. Nawet jeżeli ktoś nie pracuje stricte w

grach, ale interesuje się nimi, to nadal może to być bardzo ciekawa

rzecz.

Innym kanałem, zwłaszcza dla tych, którzy mają trochę zacięcie

humanistyczne i interesują się warstwą fabularno-narracyjną jest

FatBrett. Jest to kanał, który analizuje różne duże produkcje takie jak

God of War, Final Fantasy czy właśnie Claire Obscure pod kątem tej

fabuły, tego jak to jest poprowadzone. A jeszcze innym kanałem jest

Game Developers Conference, czy w skrócie GDC. Jest to oficjalny

kanał chyba największej konferencji w branży gier, gdzie regularnie

wrzucane są wykłady i prezentacje, przychodzą przeróżni ludzie z

różnych specjalizacji, ze studiów dużych jak i małych, którzy opowiadają

o swoich sukcesach, o swojej wiedzy. Jest to świetne miejsce dla

każdego, kto chce po prostu zobaczyć, jak coś w danej grze zostało

zrobione, jakie są dobre praktyki, czego się wystrzegać – cała wiedza od

ludzi, którzy na grach zjedli zęby.

Mateuszu, na koniec – jeśli ktoś chciałby cię o coś dopytać, poznać
twój punkt widzenia, gdzie może cię znaleźć w sieci?

https://devmentor.pl/

Jeśli chodzi o kontakt, to zdecydowanie zapraszam na mojego LinkedIna

– tam każdy może do mnie napisać wiadomość. Staram się odpisywać w

miarę na bieżąco. Nie mam na razie jakichś aktywnych social mediów.

Natomiast oprócz kontaktu na LinkedIn, zapraszam na stronę

Devmentor, na rozmowę z Mateuszem, jeśli jesteście zainteresowani

kursem GameDev, który będę prowadził.

Zapraszamy wszystkich zainteresowanych. Jeżeli ktoś chce
dopytać o coś Mateusza, to zapraszamy na jego LinkedIna.
Mateuszu, bardzo dziękuję za tę rozmowę i podzielenie się z nami
swoimi doświadczeniami.

Dzięki.

https://devmentor.pl/

	
	Pierwsze kroki w IT​PODCAST

